If it's not what You are looking for type in the equation solver your own equation and let us solve it.
u^2=32
We move all terms to the left:
u^2-(32)=0
a = 1; b = 0; c = -32;
Δ = b2-4ac
Δ = 02-4·1·(-32)
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{2}}{2*1}=\frac{0-8\sqrt{2}}{2} =-\frac{8\sqrt{2}}{2} =-4\sqrt{2} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{2}}{2*1}=\frac{0+8\sqrt{2}}{2} =\frac{8\sqrt{2}}{2} =4\sqrt{2} $
| (7)/(8)x-22=27 | | -14+4(3x+5)=7 | | 12=2x-40 | | -6(8-3n)=30+5n | | x/6−1/5=730 | | w^2-1=23 | | x*4+3=20 | | 20b+15^3=0 | | 5x-2|3+3x+2|7=2x | | -9/5m=25 | | 40=12w-7w | | 2n-14=32 | | x÷10=5 | | -5x^2-530-90x=0 | | -7(7b-2)=14+b | | t^2+t-132=0 | | 41/3+q=51/6 | | 3x+4+2x=5(x-2+7 | | -6{p+3}=-54 | | -7(7b-2)=18+b | | 7y+27+2y+7=90 | | 5x-2/3+3x+2/7=2x | | -5x^-530-90x=0 | | h^2-86=0 | | 3-4x+2(5.5)=9 | | 2(x-3)+12=-3(x-2) | | 3x^2+13+1=0 | | −5x^2−530=90x | | 6(x-7)=-6-2(8x-4) | | p^2-74=-74 | | -3m+12-4m=-7m=14 | | 2r+5=-3 |